Enter a problem...
Linear Algebra Examples
[1000260-4-12]⎡⎢⎣1000260−4−12⎤⎥⎦
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]⎡⎢⎣+−+−+−+−+⎤⎥⎦
Step 2
Step 2.1
Calculate the minor for element a11a11.
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|26-4-12|∣∣∣26−4−12∣∣∣
Step 2.1.2
Evaluate the determinant.
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a11=2⋅-12-(-4⋅6)a11=2⋅−12−(−4⋅6)
Step 2.1.2.2
Simplify the determinant.
Step 2.1.2.2.1
Simplify each term.
Step 2.1.2.2.1.1
Multiply 22 by -12−12.
a11=-24-(-4⋅6)a11=−24−(−4⋅6)
Step 2.1.2.2.1.2
Multiply -(-4⋅6)−(−4⋅6).
Step 2.1.2.2.1.2.1
Multiply -4−4 by 66.
a11=-24--24a11=−24−−24
Step 2.1.2.2.1.2.2
Multiply -1−1 by -24−24.
a11=-24+24a11=−24+24
a11=-24+24a11=−24+24
a11=-24+24a11=−24+24
Step 2.1.2.2.2
Add -24−24 and 2424.
a11=0a11=0
a11=0a11=0
a11=0a11=0
a11=0a11=0
Step 2.2
Calculate the minor for element a12a12.
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|060-12|∣∣∣060−12∣∣∣
Step 2.2.2
Evaluate the determinant.
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a12=0⋅-12+0⋅6a12=0⋅−12+0⋅6
Step 2.2.2.2
Simplify the determinant.
Step 2.2.2.2.1
Simplify each term.
Step 2.2.2.2.1.1
Multiply 00 by -12−12.
a12=0+0⋅6a12=0+0⋅6
Step 2.2.2.2.1.2
Multiply 00 by 66.
a12=0+0a12=0+0
a12=0+0a12=0+0
Step 2.2.2.2.2
Add 00 and 00.
a12=0a12=0
a12=0a12=0
a12=0a12=0
a12=0a12=0
Step 2.3
Calculate the minor for element a13a13.
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|020-4|∣∣∣020−4∣∣∣
Step 2.3.2
Evaluate the determinant.
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a13=0⋅-4+0⋅2a13=0⋅−4+0⋅2
Step 2.3.2.2
Simplify the determinant.
Step 2.3.2.2.1
Simplify each term.
Step 2.3.2.2.1.1
Multiply 00 by -4−4.
a13=0+0⋅2a13=0+0⋅2
Step 2.3.2.2.1.2
Multiply 00 by 22.
a13=0+0a13=0+0
a13=0+0a13=0+0
Step 2.3.2.2.2
Add 00 and 00.
a13=0a13=0
a13=0a13=0
a13=0a13=0
a13=0a13=0
Step 2.4
Calculate the minor for element a21a21.
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|00-4-12|∣∣∣00−4−12∣∣∣
Step 2.4.2
Evaluate the determinant.
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
a21=0⋅-12-(-4⋅0)
Step 2.4.2.2
Simplify the determinant.
Step 2.4.2.2.1
Simplify each term.
Step 2.4.2.2.1.1
Multiply 0 by -12.
a21=0-(-4⋅0)
Step 2.4.2.2.1.2
Multiply -(-4⋅0).
Step 2.4.2.2.1.2.1
Multiply -4 by 0.
a21=0-0
Step 2.4.2.2.1.2.2
Multiply -1 by 0.
a21=0+0
a21=0+0
a21=0+0
Step 2.4.2.2.2
Add 0 and 0.
a21=0
a21=0
a21=0
a21=0
Step 2.5
Calculate the minor for element a22.
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|100-12|
Step 2.5.2
Evaluate the determinant.
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=1⋅-12+0⋅0
Step 2.5.2.2
Simplify the determinant.
Step 2.5.2.2.1
Simplify each term.
Step 2.5.2.2.1.1
Multiply -12 by 1.
a22=-12+0⋅0
Step 2.5.2.2.1.2
Multiply 0 by 0.
a22=-12+0
a22=-12+0
Step 2.5.2.2.2
Add -12 and 0.
a22=-12
a22=-12
a22=-12
a22=-12
Step 2.6
Calculate the minor for element a23.
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|100-4|
Step 2.6.2
Evaluate the determinant.
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=1⋅-4+0⋅0
Step 2.6.2.2
Simplify the determinant.
Step 2.6.2.2.1
Simplify each term.
Step 2.6.2.2.1.1
Multiply -4 by 1.
a23=-4+0⋅0
Step 2.6.2.2.1.2
Multiply 0 by 0.
a23=-4+0
a23=-4+0
Step 2.6.2.2.2
Add -4 and 0.
a23=-4
a23=-4
a23=-4
a23=-4
Step 2.7
Calculate the minor for element a31.
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|0026|
Step 2.7.2
Evaluate the determinant.
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=0⋅6-2⋅0
Step 2.7.2.2
Simplify the determinant.
Step 2.7.2.2.1
Simplify each term.
Step 2.7.2.2.1.1
Multiply 0 by 6.
a31=0-2⋅0
Step 2.7.2.2.1.2
Multiply -2 by 0.
a31=0+0
a31=0+0
Step 2.7.2.2.2
Add 0 and 0.
a31=0
a31=0
a31=0
a31=0
Step 2.8
Calculate the minor for element a32.
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|1006|
Step 2.8.2
Evaluate the determinant.
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=1⋅6+0⋅0
Step 2.8.2.2
Simplify the determinant.
Step 2.8.2.2.1
Simplify each term.
Step 2.8.2.2.1.1
Multiply 6 by 1.
a32=6+0⋅0
Step 2.8.2.2.1.2
Multiply 0 by 0.
a32=6+0
a32=6+0
Step 2.8.2.2.2
Add 6 and 0.
a32=6
a32=6
a32=6
a32=6
Step 2.9
Calculate the minor for element a33.
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|1002|
Step 2.9.2
Evaluate the determinant.
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=1⋅2+0⋅0
Step 2.9.2.2
Simplify the determinant.
Step 2.9.2.2.1
Simplify each term.
Step 2.9.2.2.1.1
Multiply 2 by 1.
a33=2+0⋅0
Step 2.9.2.2.1.2
Multiply 0 by 0.
a33=2+0
a33=2+0
Step 2.9.2.2.2
Add 2 and 0.
a33=2
a33=2
a33=2
a33=2
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[0000-1240-62]
[0000-1240-62]
Step 3
Transpose the matrix by switching its rows to columns.
[0000-12-6042]