Linear Algebra Examples

Find the Adjoint [[1,0,0],[0,2,6],[0,-4,-12]]
[1000260-4-12]1000260412
Step 1
Consider the corresponding sign chart.
[+-+-+-+-+]+++++
Step 2
Use the sign chart and the given matrix to find the cofactor of each element.
Tap for more steps...
Step 2.1
Calculate the minor for element a11a11.
Tap for more steps...
Step 2.1.1
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|26-4-12|26412
Step 2.1.2
Evaluate the determinant.
Tap for more steps...
Step 2.1.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a11=2-12-(-46)a11=212(46)
Step 2.1.2.2
Simplify the determinant.
Tap for more steps...
Step 2.1.2.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.2.1.1
Multiply 22 by -1212.
a11=-24-(-46)a11=24(46)
Step 2.1.2.2.1.2
Multiply -(-46)(46).
Tap for more steps...
Step 2.1.2.2.1.2.1
Multiply -44 by 66.
a11=-24--24a11=2424
Step 2.1.2.2.1.2.2
Multiply -11 by -2424.
a11=-24+24a11=24+24
a11=-24+24a11=24+24
a11=-24+24a11=24+24
Step 2.1.2.2.2
Add -2424 and 2424.
a11=0a11=0
a11=0a11=0
a11=0a11=0
a11=0a11=0
Step 2.2
Calculate the minor for element a12a12.
Tap for more steps...
Step 2.2.1
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|060-12|06012
Step 2.2.2
Evaluate the determinant.
Tap for more steps...
Step 2.2.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a12=0-12+06a12=012+06
Step 2.2.2.2
Simplify the determinant.
Tap for more steps...
Step 2.2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.2.1.1
Multiply 00 by -1212.
a12=0+06a12=0+06
Step 2.2.2.2.1.2
Multiply 00 by 66.
a12=0+0a12=0+0
a12=0+0a12=0+0
Step 2.2.2.2.2
Add 00 and 00.
a12=0a12=0
a12=0a12=0
a12=0a12=0
a12=0a12=0
Step 2.3
Calculate the minor for element a13a13.
Tap for more steps...
Step 2.3.1
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|020-4|0204
Step 2.3.2
Evaluate the determinant.
Tap for more steps...
Step 2.3.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a13=0-4+02a13=04+02
Step 2.3.2.2
Simplify the determinant.
Tap for more steps...
Step 2.3.2.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.1.1
Multiply 00 by -44.
a13=0+02a13=0+02
Step 2.3.2.2.1.2
Multiply 00 by 22.
a13=0+0a13=0+0
a13=0+0a13=0+0
Step 2.3.2.2.2
Add 00 and 00.
a13=0a13=0
a13=0a13=0
a13=0a13=0
a13=0a13=0
Step 2.4
Calculate the minor for element a21a21.
Tap for more steps...
Step 2.4.1
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|00-4-12|00412
Step 2.4.2
Evaluate the determinant.
Tap for more steps...
Step 2.4.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
a21=0-12-(-40)
Step 2.4.2.2
Simplify the determinant.
Tap for more steps...
Step 2.4.2.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.2.1.1
Multiply 0 by -12.
a21=0-(-40)
Step 2.4.2.2.1.2
Multiply -(-40).
Tap for more steps...
Step 2.4.2.2.1.2.1
Multiply -4 by 0.
a21=0-0
Step 2.4.2.2.1.2.2
Multiply -1 by 0.
a21=0+0
a21=0+0
a21=0+0
Step 2.4.2.2.2
Add 0 and 0.
a21=0
a21=0
a21=0
a21=0
Step 2.5
Calculate the minor for element a22.
Tap for more steps...
Step 2.5.1
The minor for a22 is the determinant with row 2 and column 2 deleted.
|100-12|
Step 2.5.2
Evaluate the determinant.
Tap for more steps...
Step 2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a22=1-12+00
Step 2.5.2.2
Simplify the determinant.
Tap for more steps...
Step 2.5.2.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.2.1.1
Multiply -12 by 1.
a22=-12+00
Step 2.5.2.2.1.2
Multiply 0 by 0.
a22=-12+0
a22=-12+0
Step 2.5.2.2.2
Add -12 and 0.
a22=-12
a22=-12
a22=-12
a22=-12
Step 2.6
Calculate the minor for element a23.
Tap for more steps...
Step 2.6.1
The minor for a23 is the determinant with row 2 and column 3 deleted.
|100-4|
Step 2.6.2
Evaluate the determinant.
Tap for more steps...
Step 2.6.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a23=1-4+00
Step 2.6.2.2
Simplify the determinant.
Tap for more steps...
Step 2.6.2.2.1
Simplify each term.
Tap for more steps...
Step 2.6.2.2.1.1
Multiply -4 by 1.
a23=-4+00
Step 2.6.2.2.1.2
Multiply 0 by 0.
a23=-4+0
a23=-4+0
Step 2.6.2.2.2
Add -4 and 0.
a23=-4
a23=-4
a23=-4
a23=-4
Step 2.7
Calculate the minor for element a31.
Tap for more steps...
Step 2.7.1
The minor for a31 is the determinant with row 3 and column 1 deleted.
|0026|
Step 2.7.2
Evaluate the determinant.
Tap for more steps...
Step 2.7.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a31=06-20
Step 2.7.2.2
Simplify the determinant.
Tap for more steps...
Step 2.7.2.2.1
Simplify each term.
Tap for more steps...
Step 2.7.2.2.1.1
Multiply 0 by 6.
a31=0-20
Step 2.7.2.2.1.2
Multiply -2 by 0.
a31=0+0
a31=0+0
Step 2.7.2.2.2
Add 0 and 0.
a31=0
a31=0
a31=0
a31=0
Step 2.8
Calculate the minor for element a32.
Tap for more steps...
Step 2.8.1
The minor for a32 is the determinant with row 3 and column 2 deleted.
|1006|
Step 2.8.2
Evaluate the determinant.
Tap for more steps...
Step 2.8.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a32=16+00
Step 2.8.2.2
Simplify the determinant.
Tap for more steps...
Step 2.8.2.2.1
Simplify each term.
Tap for more steps...
Step 2.8.2.2.1.1
Multiply 6 by 1.
a32=6+00
Step 2.8.2.2.1.2
Multiply 0 by 0.
a32=6+0
a32=6+0
Step 2.8.2.2.2
Add 6 and 0.
a32=6
a32=6
a32=6
a32=6
Step 2.9
Calculate the minor for element a33.
Tap for more steps...
Step 2.9.1
The minor for a33 is the determinant with row 3 and column 3 deleted.
|1002|
Step 2.9.2
Evaluate the determinant.
Tap for more steps...
Step 2.9.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
a33=12+00
Step 2.9.2.2
Simplify the determinant.
Tap for more steps...
Step 2.9.2.2.1
Simplify each term.
Tap for more steps...
Step 2.9.2.2.1.1
Multiply 2 by 1.
a33=2+00
Step 2.9.2.2.1.2
Multiply 0 by 0.
a33=2+0
a33=2+0
Step 2.9.2.2.2
Add 2 and 0.
a33=2
a33=2
a33=2
a33=2
Step 2.10
The cofactor matrix is a matrix of the minors with the sign changed for the elements in the - positions on the sign chart.
[0000-1240-62]
[0000-1240-62]
Step 3
Transpose the matrix by switching its rows to columns.
[0000-12-6042]
 [x2  12  π  xdx ]